采用SiC FET盡可能提升圖騰柱PFC級(jí)的能效
發(fā)布時(shí)間:2021-05-17 來源:UnitedSiC應(yīng)用工程師Mike Zhu 責(zé)任編輯:lina
【導(dǎo)讀】圖騰柱PFC電路能顯著改善交流輸入轉(zhuǎn)換器的效率,但是主流半導(dǎo)體開關(guān)技術(shù)的局限性使其不能發(fā)揮全部潛力。不過,SiC FET能突破這些局限性。本文介紹了如何在數(shù)千瓦電壓下實(shí)現(xiàn)99.3%以上的效率。
交流輸入電源的設(shè)計(jì)師必須竭力滿足許多要求,包括功能要求、安全要求和EMC要求等等。他們通常需要進(jìn)行權(quán)衡取舍,一個(gè)好例子是既要求達(dá)到服務(wù)器電源的“鈦”標(biāo)準(zhǔn)等能效目標(biāo),又要用功率因素校正(PFC)將線路諧波發(fā)射保持在低水平,以幫助電網(wǎng)可靠高效地運(yùn)行。在大部分情況下,會(huì)通過升壓轉(zhuǎn)換器部分實(shí)施PFC,升壓轉(zhuǎn)換器會(huì)將整流后的主電壓升為高直流電壓,而脈沖寬度調(diào)制迫使線路電流符合正弦波和線路電壓的相位。雖然PFC級(jí)無法避免損耗,但人們?cè)谠O(shè)計(jì)時(shí)耗費(fèi)了大量努力來提高效率,使得從交流輸入電轉(zhuǎn)為高壓直流電時(shí)可接受的最低效率也要超過99%。
圖騰柱PFC級(jí)的導(dǎo)電路徑中的組件較少
橋式整流器可為單獨(dú)的升壓級(jí)提供整流后的交流電,如圖1(左)所示。該方式被廣泛采用,以獲得有效的功率因數(shù)校正,但是僅二極管中的損耗就可以輕松超過整體損耗預(yù)算的1%。圖騰柱PFC級(jí)(TPPFC)是更好的解決方案,如圖1(右)所示。
圖1:橋式整流器輸入(左)和圖騰柱PFC級(jí)(右)
在TPPFC電路中,當(dāng)連接到L1的交流電主線路為正壓時(shí),Q1是升壓開關(guān),Q2是同步整流器,Q3導(dǎo)電以允許線路電流循環(huán)而Q4阻斷電路。當(dāng)交流輸入電壓為負(fù)壓時(shí),Q1和Q2角色互換,Q3阻斷電路而Q4導(dǎo)電。無論何時(shí),在TPPFC級(jí)中,導(dǎo)電的器件要比橋輸入PFC少一個(gè),而整體壓降仍較低,因?yàn)樗卸O管都被同步整流器取代了。Q1和Q2像在普通升壓轉(zhuǎn)換器中一樣在高頻下開關(guān),而Q3和Q4以線路頻率交替導(dǎo)電,因此只有它們的導(dǎo)電損耗會(huì)產(chǎn)生重要影響。
必須選擇PFC級(jí)導(dǎo)電模式
設(shè)計(jì)師們可以選擇運(yùn)行模式與任何升壓轉(zhuǎn)換器,這與L1中存儲(chǔ)的能量是否在每個(gè)周期內(nèi)完全轉(zhuǎn)移到輸出中有關(guān)。這相當(dāng)于每個(gè)周期的電感電流都跌到零(斷續(xù)導(dǎo)電模式,DCM)或持續(xù)為正(連續(xù)導(dǎo)電模式,CCM)。還可以安排電路在二者的臨界線上運(yùn)行(臨界導(dǎo)電模式,CrM),這需要開關(guān)頻率可隨著負(fù)載和線路變化而變化。這些模式有各自的優(yōu)缺點(diǎn),DCM電路有軟打開開關(guān),可實(shí)現(xiàn)低損耗,但是在關(guān)閉時(shí)dV/dt相關(guān)的EMI很高,而且峰值電流電平過高,從而使得該模式不適合大功率應(yīng)用。CrM有變頻運(yùn)行的缺點(diǎn),而且雖然CrM中的峰值電流較小,但是除非各級(jí)交錯(cuò)否則它們產(chǎn)生的導(dǎo)電損耗仍不可接受,而各級(jí)交錯(cuò)會(huì)產(chǎn)生相關(guān)成本和復(fù)雜性。CCM峰值電流最低,導(dǎo)電損耗也最低,但是電路采用“硬開關(guān)”方式來打開和關(guān)閉,同時(shí)經(jīng)過的電流大,這導(dǎo)致如果使用基于硅的功率開關(guān)可能會(huì)造成大損耗。在這些損耗中占據(jù)主要部分的是高頻升壓同步整流器體二極管的反向恢復(fù)電荷QRR和升壓開關(guān)的輸出電容COSS,該電容在每個(gè)周期中都會(huì)充電和放電。這些影響十分嚴(yán)重,以致直到不久前,在采用市面上的半導(dǎo)體器件的情況下,這些拓?fù)洳⒉痪邆淇尚行浴?nbsp;
寬帶隙半導(dǎo)體就是解決方案
碳化硅(SiC)和氮化鎵(GaN)被視為未來的功率半導(dǎo)體,有許多人撰文稱贊它們的低導(dǎo)通損耗和低開關(guān)損耗這兩種值得大力宣傳的優(yōu)點(diǎn)。自然而然地,可以考慮將它們用于TPPFC電路,而且它們確實(shí)讓電路變得可行。SiC MOSFET的性能比硅MOSFET好,體二極管反向恢復(fù)電荷QRR低80%或更多,輸出電容COSS也較低。然而,同步整流器導(dǎo)電前,在“死區(qū)時(shí)間”,體二極管的正向壓降非常高。采用SiC MOSFET時(shí)的柵極驅(qū)動(dòng)偶爾也會(huì)有閾值遲滯現(xiàn)象和可變性方面的問題,而且全面增強(qiáng)的柵極電壓與最大絕對(duì)值之間的裕度小。
GaN器件沒有體二極管和反向恢復(fù)問題,但是為了實(shí)現(xiàn)最佳效率和低閾值電壓,柵極驅(qū)動(dòng)很復(fù)雜,并伴隨虛假打開風(fēng)險(xiǎn)。GaN HEMT單元仍然相對(duì)昂貴,且適合較低的功率范圍,沒有雪崩能力。
SiC FET仍是較好選擇
SiC FET是保留了SiC MOSFET最佳方面而無其缺點(diǎn)的器件,它是高壓SiC JFET和低壓Si-MOSFET的共源共柵組合。該器件速度快,導(dǎo)通電阻很低,但是柵極驅(qū)動(dòng)簡(jiǎn)單,兼容Si-MOSFET甚至IGBT電平。它的閾值電壓很高,無遲滯現(xiàn)象,距離最大絕對(duì)額定值有很好的裕度。該器件具有由低壓Si-MOSFET定義的體二極管效應(yīng),QRR極低,正向壓降僅為1.75V左右,同時(shí)輸出電容COSS也低。它具有可防止過壓的雪崩效應(yīng)。
SiC FET由UnitedSiC率先制造,現(xiàn)已推出第四代產(chǎn)品。第四代產(chǎn)品改進(jìn)了單元密度以降低單位面積的導(dǎo)通電阻(RDS.A),運(yùn)用銀燒結(jié)粘接和晶圓減薄技術(shù)改進(jìn)了熱設(shè)計(jì),從而盡量減小了到基片的熱阻。
只有在考慮了權(quán)衡取舍的特征后,對(duì)比SiC FET和相同器件電壓級(jí)的其他技術(shù)才有意義。因此,查看給定性能下每個(gè)晶圓的晶粒的RDS.A和RDS.EOSS(衡量如何權(quán)衡硬開關(guān)損耗和導(dǎo)電損耗的指標(biāo))等性能表征會(huì)很用。圖2顯示的是第四代750V UnitedSiC SiC FET器件與類似的650V SiC MOSFET器件在25°C和125°C下的對(duì)比。SiC FET的優(yōu)勢(shì)很明顯,而額定值還高100V,這很實(shí)用。
圖2:SiC FET與SiC MOSFET對(duì)比
實(shí)際結(jié)果證實(shí)了SiC FET的優(yōu)勢(shì)
UnitedSiC使用額定值為750V,18毫歐,采用TO-247-4L開爾文連接封裝的第四代UJ4C075018K4S器件構(gòu)建了圖騰柱PFC級(jí)演示板。PFC級(jí)的額定值為3.6kW 85-264V交流輸入電壓和390V直流輸出電壓。兩個(gè)SiC FET用于60kHz高頻開關(guān)支路,四個(gè)28毫歐硅超結(jié)MOSFET用于“慢”支路。圖3顯示的是效率曲線,在230V交流電壓和2.5kW輸出下,效率達(dá)到99.37%的高峰。為提供更多信息,圖中還顯示了成本較低的60毫歐SiC FET器件的曲線(在每個(gè)位置并聯(lián)兩個(gè)該器件)。
圖3:使用SiC FET的3.6kW圖騰柱PFC級(jí)的效率
在對(duì)成本非常敏感的應(yīng)用中,圖1中的Q3和Q4可以替換成標(biāo)準(zhǔn)硅二極管,這樣,在描述的演示板中,效率仍能超過99%。如果采用橋式整流器,則最好多使用兩個(gè)二極管來實(shí)現(xiàn)突波保護(hù),防止升壓電感在啟動(dòng)時(shí)瞬間飽和。
使用FET-Jet計(jì)算器可輕松選擇SiC FET
為了方便選出適合的 SiC FET,UnitedSiC提供了一種基于Web的設(shè)計(jì)工具,F(xiàn)ET-Jet計(jì)算器。這款交互工具包含用于各種拓?fù)涞母綦x和非隔離直流轉(zhuǎn)換器以及交直流轉(zhuǎn)換器的預(yù)先編程的應(yīng)用電路,包括簡(jiǎn)單的升壓PFC和圖騰柱PFC等。它也支持CCM和CrM模式。使用者可以從下拉列表中為每個(gè)應(yīng)用選擇SiC FET,然后該工具會(huì)瞬間計(jì)算出整體效率、損耗(并按開關(guān)損耗和導(dǎo)電損耗進(jìn)行分析)、結(jié)溫和當(dāng)前應(yīng)力水平??梢赃x擇要并聯(lián)的器件,以實(shí)現(xiàn)較高功率。如出現(xiàn)無效輸入,計(jì)算器會(huì)發(fā)出警告。該工具免費(fèi)使用,且無需注冊(cè)。
圖騰柱PFC級(jí)是一種有吸引力的方法,有望實(shí)現(xiàn)更高的效率和更簡(jiǎn)單的設(shè)計(jì),但是直到不久前,半導(dǎo)體技術(shù)也未能讓它發(fā)揮出全部潛力。在SiC FET的幫助下,該電路現(xiàn)在走入了工程師們的視野,用于在交流輸入轉(zhuǎn)換器中將功耗降低至更低水平。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器