你的位置:首頁 > 互連技術 > 正文

使用SEMulator3D進行虛擬工藝故障排除和研究

發(fā)布時間:2024-02-19 責任編輯:lina

【導讀】現(xiàn)代半導體工藝極其復雜,包含成百上千個互相影響的獨立工藝步驟。在開發(fā)這些工藝步驟時,上游和下游的工藝模塊之間常出現(xiàn)不可預期的障礙,造成開發(fā)周期延長和成本增加。本文中,我們將討論如何使用 SEMulator3D?中的實驗設計 (DOE) 功能來解決這一問題。

 

SEMulator3D 工藝建模在開發(fā)早期識別工藝和設計問題,減少了開發(fā)延遲、晶圓制造成本和上市時間


使用SEMulator3D進行虛擬工藝故障排除和研究


現(xiàn)代半導體工藝極其復雜,包含成百上千個互相影響的獨立工藝步驟。在開發(fā)這些工藝步驟時,上游和下游的工藝模塊之間常出現(xiàn)不可預期的障礙,造成開發(fā)周期延長和成本增加。本文中,我們將討論如何使用 SEMulator3D?中的實驗設計 (DOE) 功能來解決這一問題。


在 3D NAND 存儲器件的制造中,有一個關鍵工藝模塊涉及在存儲單元中形成金屬柵極和字線。這個工藝首先需要在基板上沉積數(shù)百層二氧化硅和氮化硅交替堆疊層。其次,在堆疊層上以最小圖形間隔來圖形化和刻蝕存儲孔陣列。此時,每層氮化硅(即將成為字線)的外表變得像一片瑞士奶酪。在這些工藝步驟中,很難實現(xiàn)側壁剖面控制,因為刻蝕工藝中深寬比較高,且存儲單元孔需要極大的深度。因此,刻蝕工藝中可能會出現(xiàn)彎折、扭曲等偏差。從堆疊層頂部到底部,存儲單元孔直徑和孔間隔可存在最高25%的偏差。


在存儲單元孔中沉積存儲單元材料后,在區(qū)塊外邊緣上圖形化和刻蝕一系列窄長的狹縫溝槽。這第二次刻蝕暴露出狹縫溝槽側壁中的犧牲氮化硅后,對其從邊緣到中間進行橫向刻蝕,直至完全去除。(1) 隨后,沉積阻擋層化合物內襯和導電金屬,填充氮化硅層邊緣到中間的空間。這一工藝會生成金屬柵極存儲器單元和字線。(2) 從外部存儲單元孔到狹縫溝槽內邊緣的距離稱為“軌距”(如圖1)。該導通路徑提供一條沿字線外邊緣的低電阻傳導通路。字線很長,通常等于存儲區(qū)塊的整個長度。為了維持所需的存儲器開關速度,需要對字線電阻進行高度控制。


使用SEMulator3D進行虛擬工藝故障排除和研究

圖1:虛擬模型實驗的俯視圖,每次實驗(a、b和c)設置不同的實驗條件。a) 模型中有較大存儲單元孔、有空隙、無字線導通路徑。字線空隙標紅。由于存儲單元孔間距較小,空隙引發(fā)封閉。b) 模型中有較大存儲單元孔、字線導通路徑正常、無空隙。c) 模型中有正常大小存儲單元孔、字線導通路徑正常。


我們使用 SEMulator3D 模型以更好地研究 3D NAND 中字線電阻的影響因素。該研究表明,僅因為去除了存儲單元孔中的導電材料,造成的 3D NAND 字線電阻遠大于預期值。這表明,去除犧牲氮化硅,或用導電金屬替換犧牲氮化硅的過程會形成空隙,從而增加字線電阻。SEMulator3D 虛擬模型顯示,如果存儲單元孔過大,或孔間隔過窄,通向字線內部的橫向沉積通路將被封閉,并在導電金屬中形成空隙(如圖2)。


使用SEMulator3D進行虛擬工藝故障排除和研究

圖2:SEMulator3D 虛擬模型展示了字線邊緣的三平面橫截面圖。金屬導體填充沒有從狹縫溝槽邊緣的封閉處持續(xù)到字線中心。電流僅通過內襯,從字線中心傳導到封閉處。


我們使用 SEMulator3D 工藝模型,以不同的存儲單元孔直徑、軌距和空隙定位,進行了200次虛擬模型實驗。用 SEMulator3D 電性分析軟件包模擬了字線電阻,隨后從虛擬模型實驗中提取字線電阻,并繪制了電阻增加百分比與軌距、存儲單元孔徑增加和帶有空隙的對比圖(如圖3)。


圖3顯示了空隙形成對字線電阻的影響。如果比較無空隙時的字線電阻增加(紅線)和存在空隙時的字線電阻增加(藍線),空隙的影響比較明顯。不考慮存儲孔大小,空隙的存在使字線電阻增加了55%。增加外軌距后,存儲單元孔大小對字線電阻的影響減少200%,并將引入空隙對字線電阻的影響降低到可以忽略不計的程度。結果表明,字線電阻隨存儲孔大小增加而增加。


使用SEMulator3D進行虛擬工藝故障排除和研究

圖3:字線電阻增加(單位:百分比)與存儲單元孔直徑增加(單位:百分比)和軌距(單位:nm)的關系圖。紅線表示模型中包含字線空隙的結果(正確),藍線表示模型中刪除字線空隙并對其填充的結果(錯誤)。


隨著軌距趨于零,迫使更多電流流入字線內部區(qū)域。當存儲孔尺寸增加時,空隙尺寸增加,低電阻導電金屬和較高電阻的阻擋層化合物內襯間的體積減?。ㄈ鐖D4)。當保留字線軌距時,字線電阻對存儲孔尺寸和金屬空隙的依賴降至最低。


使用SEMulator3D進行虛擬工藝故障排除和研究

圖4:虛擬模型實驗中的電流密度俯視圖,每項設定(如圖a、b和c所示)根據(jù)不同實驗有所變化(參閱圖1)。a) 導通路徑不連續(xù),導致電流流入字線內部。b) 存儲孔大小與圖a中的一致,但較寬的導通路徑使電流沿著字線外邊緣流動。c) 字線軌距產(chǎn)生更均勻的電流密度圖形。


使用 SEMulator3D 空隙定位,虛擬模型可以在不考慮存儲孔大小的情況下,預測空隙對字線電阻的影響。在實際的硅晶圓工藝中,沒有辦法在 3D NAND 工藝開發(fā)中對空隙形成和存儲單元孔大小進行分離實驗。SEMulator3D 可實現(xiàn)晶圓廠中很難或者不可能進行的實驗。


我們用 SEMulator3D 工藝建模模擬了 3D NAND 字線形成工藝。我們觀察到,上游存儲單元空隙模塊會對下游字線形成模塊產(chǎn)生負面影響,并導致字線電阻的急劇增加。通過虛擬模型,我們得以模擬上游和下游模塊間存在的問題,并用多次實驗探索潛在的解決方案(在我們的案例中,解決方案涉及設計上的調整)。SEMulator3D 工藝建??梢栽陂_發(fā)早期識別工藝和設計問題,其間無需大量的硅晶圓實驗,這減少了開發(fā)延遲、晶圓制造成本和上市時間。


參考資料:

[1] Handy, “An Alternative Kind of Vertical 3D NAND String”, Jim Handy, Objective Analysis, on Semiconductor Memories, Nov 8, 2013.

[2] A. Goda, “Recent Progress on 3D NAND Flash Technologies”, Electronics2021, 10(24), 3156.

(作者:泛林集團 Semiverse Solutions 部門半導體工藝與整合部經(jīng)理 Brett Lowe)


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。


推薦閱讀:

在后量子計算時代, 是否能縮短暴力攻擊攻破系統(tǒng)所需的時間?

觸發(fā)器輸出波形又是如何的呢?

可控硅整流器什么時候開始導通?

脈沖產(chǎn)生電路之多諧振蕩器

寄生天線耦合器有什么用途?


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉