【導讀】你是不是對上下拉電阻有迷惑?看過這篇原創(chuàng)文章你就全都明白了:上下拉電阻定義、上下拉電阻作用、上拉電阻阻值的選擇原則、對其輸入/輸出引腳的解釋……幫很多工程師解過惑哦,你肯定不想錯過!
一、上下拉電阻定義:
上拉就是將不確定的信號通過一個電阻嵌位在高電平!電阻同時起限流作用!下拉同理!
上拉是對器件注入電流,下拉是輸出電流;弱強只是上拉電阻的阻值不同,沒有什么嚴格區(qū)分;對于非集電極(或漏極)開路輸出型電路(如普通門電路)提升電流和電壓的能力是有限的,上拉電阻的功能主要是為集電極開路輸出型電路輸出電流通道。
二、上下拉電阻作用:
1、提高電壓準位:a.當TTL電路驅(qū)動COMS電路時,如果TTL電路輸出的高電平低于COMS電路的最低高電平(一般為3。5V), 這時就需要在TTL的輸出端接上拉電阻,以提高輸出高電平的值。b.OC門電路必須加上拉電阻,以提高輸出的搞電平值。
2、加大輸出引腳的驅(qū)動能力,有的單片機管腳上也常使用上拉電阻。
3、N/A pin防靜電、防干擾:在COMS芯片上,為了防止靜電造成損壞,不用的管腳不能懸空,一般接上拉電阻產(chǎn)生降低輸入阻抗, 提供泄荷通路。同時管腳懸空就比較容易接受外界的電磁干擾。
4、電阻匹配,抑制反射波干擾:長線傳輸中電阻不匹配容易引起反射波干擾,加上下拉電阻是電阻匹配,有效的抑制反射波干擾。
5、預設空間狀態(tài)/缺省電位:在一些 CMOS 輸入端接上或下拉電阻是為了預設缺省電位。 當你不用這些引腳的時候, 這些輸入端下拉接 0 或上拉接 1。在I2C總線等總線上,空閑時的狀態(tài)是由上下拉電阻獲得
6。 提高芯片輸入信號的噪聲容限:輸入端如果是高阻狀態(tài),或者高阻抗輸入端處于懸空狀態(tài),此時需要加上拉或下拉,以免收到隨機電平而影響電路工作。同樣如果輸出端處于被動狀態(tài),需要加上拉或下拉,如輸出端僅僅是一個三極管的集電極。從而提高芯片輸入信號的噪聲容限增強抗干擾能力。
{電源到元件間的叫上拉電阻,作用是平時使該腳為高電平
地到元件間的叫下拉電阻,作用是平時使該腳為低電平
上拉電阻和下拉電阻的范圍由器件來定(我們一般用10K)
+Vcc
+------+=上拉電阻
|+-----+
|元件|
|+-----+
+------+=下拉電阻
-Gnd
一般來說上拉或下拉電阻的作用是增大電流,加強電路的驅(qū)動能力
比如說51的p1口
還有,p0口必須接上拉電阻才可以作為io口使用
上拉和下拉的區(qū)別是一個為拉電流,一個為灌電流
一般來說灌電流比拉電流要大
也就是灌電流驅(qū)動能力強一些}
三、上拉電阻阻值的選擇原則:
1、從節(jié)約功耗及芯片的灌電流能力考慮應當足夠大;電阻大,電流小。
2、從確保足夠的驅(qū)動電流考慮應當足夠??;電阻小,電流大。
3、對于高速電路,過大的上拉電阻可能邊沿變平緩。綜合考慮
以上三點,通常在1k到10k之間選取。對下拉電阻也有類似道理
下頁內(nèi)容:上下拉電阻原理
[page]
四、上下拉電阻原理:
上拉電阻實際上是集電極輸出的負載電阻。不管是在開關應用和模擬放大,此電阻的選則都不是拍腦袋的。工作在線性范圍就不多說了,在這里是討論的是晶體管是開關應用,所以只談開關方式。找個TTL器件的資料單獨看末級就可以了,內(nèi)部都有負載電阻根據(jù)不同驅(qū)動能力和速度要求這個電阻值不同,低功耗的電阻值大,速度快的電阻值小。
但芯片制造商很難滿足應用的需要不可能同種功能芯片做許多種,因此干脆不做這個負載電阻,改由使用者自己自由選擇外接,所以就出現(xiàn)OC、OD輸出的芯片。由于數(shù)字應用時晶體管工作在飽和和截止區(qū),對負載電阻要求不高,電阻值小到只要不小到損壞末級晶體管就可以,大到輸出上升時間滿足設計要求就可,隨便選一個都可以正常工作。
但是一個電路設計是否優(yōu)秀這些細節(jié)也是要考慮的。集電極輸出的開關電路不管是開還是關對地始終是通的,晶體管導通時電流從負載電阻經(jīng)導通的晶體管到地,截止時電流從負載電阻經(jīng)負載的輸入電阻到地,如果負載電阻選擇小點功耗就會大,這在電池供電和要求功耗小的系統(tǒng)設計中是要盡量避免的,如果電阻選擇大又會帶來信號上升沿的延時,因為負載的輸入電容在上升沿是通過無源的上拉電阻充電,電阻越大上升時間越長,下降沿是通過有源晶體管放電,時間取決于器件本身。因此設計者在選擇上拉電阻值時,要根據(jù)系統(tǒng)實際情況在功耗和速度上兼顧。
下面從IC(MOS工藝)的角度,分別就輸入/輸出引腳做一解釋:
1、 對芯片輸入管腳, 若在系統(tǒng)板上懸空(未與任何輸出腳或驅(qū)動相接)是比較危險的。因為此時很有可能輸入管腳內(nèi)部電容電荷累積使之達到中間電平(比如1。5V), 而使得輸入緩沖器的PMOS管和NMOS管同時導通, 這樣一來就在電源和地之間形成直接通路, 產(chǎn)生較大的漏電流, 時間一長就可能損壞芯片。 并且因為處于中間電平會導致內(nèi)部電路對其邏輯(0或1)判斷混亂。 接上上拉或下拉電阻后, 內(nèi)部點容相應被充(放)電至高(低)電平, 內(nèi)部緩沖器也只有NMOS(PMOS)管導通, 不會形成電源到地的直流通路。 (至于防止靜電造成損壞, 因芯片管腳設計中一般會加保護電路, 反而無此必要)。
2、 對于輸出管腳:
1)正常的輸出管腳(push-pull型), 一般沒有必要接上拉或下拉電阻。
2)OD或OC(漏極開路或集電極開路)型管腳,
這種類型的管腳需要外接上拉電阻實現(xiàn)線與功能(此時多個輸出可直接相連。 典型應用是: 系統(tǒng)板上多個芯片的INT(中斷信號)輸出直接相連, 再接上一上拉電阻, 然后輸入MCU的INT引腳, 實現(xiàn)中斷報警功能)。
其工作原理是:
在正常工作情況下, OD型管腳內(nèi)部的NMOS管關閉, 對外部而言其處于高阻狀態(tài), 外接上拉電阻使輸出位于高電平(無效中斷狀態(tài)); 當有中斷需求時, OD型管腳內(nèi)部的NMOS管接通, 因其導通電阻遠遠小于上拉電阻, 使輸出位于低電平(有效中斷狀態(tài))。 針對MOS 電路上下拉電阻阻值以幾十至幾百K為宜。
(注: 此回答未涉及TTL工藝的芯片, 也未曾考慮高頻PCB設計時需考慮的阻抗匹配, 電磁干擾等效應。)
1)芯片引腳上注明的上拉或下拉電阻, 是指設計在芯片引腳內(nèi)部的一個電阻或等效電阻。 設計這個電阻的目的, 是為了當用戶不需要用這個引腳的功能時, 不用外加元件, 就可以置這個引腳到缺省的狀態(tài)。 而不會使 CMOS 輸入端懸空。 使用時要注意如果這個缺省值不是你所要的, 你應該把這個輸入端直接連到你需要的狀態(tài)。
2)這個引腳如果是上拉的話, 可以用于 "線或" 邏輯。 外接漏極開路或集電極開路輸出的其他芯片。 組成負邏輯或輸入。 如果是下拉的話, 可以組成正邏輯 "線或", 但外接只能是 CMOS 的高電平漏極開路的芯片輸出, 這是因為 CMOS 輸出的高, 低電平分別由 PMOS 和 NMOS 的漏極給出電流, 可以作成 P 漏開路或 N 漏開路。 而 TTL 的高電平由源極跟隨器輸出電流, 不適合 "線或"。
3)TTL 到 CMOS 的驅(qū)動或反之, 原則上不建議用上下拉電阻來改變電平, 最好加電平轉(zhuǎn)換電路。 如果兩邊的電源都是 5 伏, 可以直接連但影響性能和穩(wěn)定, 尤其是 CMOS 驅(qū)動 TTL 時。 兩邊邏輯電平不同時, 一定要用電平轉(zhuǎn)換。 電源電壓 3 伏或以下時, 建議不要用直連更不能用電阻拉電平。
4)芯片外加電阻由應用情況決定, 但是在邏輯電路中用電阻拉電平或改善驅(qū)動能力都是不可行的。 需要改善驅(qū)動應加驅(qū)動電路。 改變電平應加電平轉(zhuǎn)換電路。 包括長線接收都有專門的芯片。