你的位置:首頁 > 傳感技術(shù) > 正文

ADI ToF深度傳感技術(shù):工業(yè)、汽車市場等涌現(xiàn)的新興應(yīng)用

發(fā)布時間:2020-01-09 來源:Colm Slattery 和 Yuzo Shida 責(zé)任編輯:wenwei

【導(dǎo)讀】飛行時間(ToF)相機(jī)憑借更小的外形尺寸、更寬的動態(tài)感測范圍,以及在多種環(huán)境下工作的能力,成為首選的深度傳感方法。雖然ToF技術(shù)已在科學(xué)和軍事領(lǐng)域應(yīng)用多年,但隨著21世紀(jì)初圖像傳感技術(shù)的進(jìn)步,才得到更加普遍的應(yīng)用。性能的變革意味著,包括 ADI ToF 技術(shù)在內(nèi)的探測技術(shù),已被應(yīng)用到智能手機(jī)、消費(fèi)電子和游戲設(shè)備中,未來將不僅限于消費(fèi)市場。隨著技術(shù)的進(jìn)一步成熟,將有機(jī)會利用主流制造工藝從設(shè)計(jì)、制造和貨物運(yùn)輸?shù)榷喾矫鎭硖岣呦到y(tǒng)效率。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖1. 飛行時間(ToF):一項(xiàng)檢測到物體的距離的技術(shù)。
 
物流、質(zhì)檢、導(dǎo)航、機(jī)器人、人臉識別、安保、監(jiān)控、安全、醫(yī)療健康和駕駛員監(jiān)控,所有這些應(yīng)用都有機(jī)會使用3D深度傳感ToF技術(shù),從而來解決許多傳統(tǒng)2D技術(shù)無能為力的問題。高分辨率深度數(shù)據(jù)與強(qiáng)大的分類算法以及AI相結(jié)合,將會解鎖許多新的應(yīng)用方向。
 
本文將探討ToF深度傳感的基本原理和兩種主要的方法,并與其他常用的深度測量技術(shù)進(jìn)行比較。然后,詳細(xì)介紹ADI公司的3D 深度傳感ToF技術(shù)的核心—— ADDI9036 模擬前端,這是一個完整的ToF信號處理器件,集成了深度處理器,將來自VGA CCD 傳感器的原始圖像數(shù)據(jù)處理成深度/像素?cái)?shù)據(jù)。我們還將討論ADI如何通過硬件合作伙伴生態(tài)系統(tǒng),將這項(xiàng)技術(shù)擴(kuò)展到我們廣闊的市場客戶群。
 
基本的工作原理
 
http://m.coahr.cn/art/artinfo/id/80037449
圖2. 簡單的飛行時間測量示意圖。
 
ToF相機(jī)通過使用調(diào)制光源(例如激光或LED)主動照亮物體,并用對激光波長敏感的圖像傳感器捕捉反射光,以此測量出目標(biāo)距離(圖2)。傳感器可以測量出發(fā)射出的激光信號經(jīng)目標(biāo)反射,回到相機(jī)的時間延遲?T。該延遲與相機(jī)到目標(biāo)物體間的兩倍距離(往返)成正比;因此,深度可以估算為:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
其中 c表示光速。ToF相機(jī)的主要工作是估算發(fā)射光信號和反射光信號之間的延遲。
 
目前存在多種不同的測量?T的方法,其中兩種最為常用:連續(xù)波(CW)方法和脈沖方法。
 
連續(xù)波方法
 
http://m.coahr.cn/art/artinfo/id/80037449
圖3. 連續(xù)波ToF系統(tǒng)圖解
 
連續(xù)波方法采用周期調(diào)制信號進(jìn)行主動發(fā)光(圖3),然后對接收到的信號進(jìn)行零差解調(diào),以測量反射光的相移。
 
例如,當(dāng)發(fā)射信號使用正弦調(diào)制是,可以表示為如下公式:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
其中
 
● As表示信號的幅度
● Bs 表示信號的偏置量
● fmod 表示調(diào)制頻率, fmod – 1/Tmod 其中 Tmod 表示調(diào)制周期。
 
接收信號 r(t)是反射信號經(jīng)過延遲和衰減得到的:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
0 ≤ α < 1,α是衰減系數(shù),其值取決于目標(biāo)距離以及表面反射率,?T表示返回信號的延遲時間。
 
連續(xù)波飛行時間傳感器通過按照相同的頻率s(t) 對接收信號 r(t))和解調(diào)信號 g(t) 之間的相關(guān)函數(shù)進(jìn)行采樣,以此測量每個像素的距離。在理想情況下,解調(diào)信號也是一個正弦波:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
像素執(zhí)行的操作為相關(guān)運(yùn)算:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
當(dāng)發(fā)射信號和解調(diào)信號都是正弦波時,相關(guān)值作為延遲τ 的函數(shù)應(yīng)用到解調(diào)信號中:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
http://m.coahr.cn/art/artinfo/id/80037449
 
之后,如公式3所示,在每個四分之一周期內(nèi),對相關(guān)函數(shù) c(τ)采樣(通過90°步進(jìn)改變發(fā)射光信號相位)。對于發(fā)射信號和解調(diào)信號之間的相位偏置Φ=2πfmodΔT,可以使用公式7估算:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
深度則與相移成正比:
 
http://m.coahr.cn/art/artinfo/id/80037449
http://m.coahr.cn/art/artinfo/id/80037449
圖4. 相關(guān)函數(shù)采樣過程圖解。
 
脈沖方法
 
在脈沖方法中,光源發(fā)出一系列N 個激光短脈沖,這些脈沖被反射回帶有電子快門的傳感器,該傳感器能夠在一系列短時間窗口中進(jìn)行曝光。圖5中的三個快門窗口或脈沖被用于捕獲反射 光脈沖。其中BG窗口捕獲環(huán)境光,計(jì)算深度時環(huán)境光強(qiáng)度會被減掉。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖5. 快門窗口捕捉反射光的示意圖。
 
根據(jù)不同快門曝光測得的光強(qiáng)值,可以按照以下公式估算得出ToF ?T:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
在公式1中,使用公式9中的表達(dá)式替代?T,得出公式10,由此計(jì)算距離:
 
http://m.coahr.cn/art/artinfo/id/80037449
 
需要注意的是,這些公式是建立在假設(shè)脈沖是完美的矩形脈沖的基礎(chǔ)上的,考慮到硬件的局限性,這是不可能實(shí)現(xiàn)的。此外,在實(shí)際情況下,需要對幾百甚至幾千個激光脈沖進(jìn)行積分,才能獲得測量所需的足夠的信噪比(SNR)。
 
連續(xù)波和脈沖ToF技術(shù)系統(tǒng)的優(yōu)缺點(diǎn)
 
相對于應(yīng)用用例,兩種ToF方法都有各自的優(yōu)缺點(diǎn)。需要考慮的問題包括:測量距離、使用系統(tǒng)的環(huán)境、精度要求、熱/功耗限制、外形大小以及電源問題。值得注意的是,目前已在市場上得到廣泛應(yīng)用的絕大多數(shù)連續(xù)波ToF系統(tǒng)都使用CMOS傳感器,脈沖ToF系統(tǒng)則使用非CMOS傳感器(主要是CCD)。因此,以下列出的優(yōu)點(diǎn)/缺點(diǎn)都是基于這些假設(shè):
 
連續(xù)波系統(tǒng)的優(yōu)點(diǎn)
 
● 對于對精度要求不高的應(yīng)用,連續(xù)波系統(tǒng)可能比脈沖系統(tǒng)更容易實(shí)現(xiàn),因?yàn)樗灰蠹す饷}沖非常短,也不需要具有超快的上升/下降沿,當(dāng)然在實(shí)際中很難復(fù)制完美的正弦波。但是,如果精度要求變得更嚴(yán)格,那么將需要更高頻率的調(diào)制信號,這實(shí)際上很難實(shí)現(xiàn)。
 
● 由于激光信號具有周期性,所以連續(xù)波系統(tǒng)測量中的任何相位測量每隔2π會重復(fù)一次,意味著會產(chǎn)生一個混疊距離。對于只有一個調(diào)制頻率的系統(tǒng),混疊距離也是最大可測距離。為了應(yīng)對這個限制,可以使用多個調(diào)制頻率來執(zhí)行相位展開,其中,如果兩個(或多個)具有不同調(diào)制頻率的相位測量值與估算的距離一致,就可以確定與物體之間的真實(shí)距離。這種多重調(diào)制頻率方案也可以用于減少多路徑誤差,多路徑誤差是由于一個物體的反射光擊中另一個物體(或在鏡頭內(nèi)部反射),然后返回到傳感器時會導(dǎo)致的測量誤差。
 
● 在所有CMOS成像器系統(tǒng)中,可以使用標(biāo)準(zhǔn)電源軌(+5 V、+3.3 V、+1.2 V),而CCD可能需要使用更高的負(fù)極(–9 V)和正極(+14 V)電源軌道。
 
● 根據(jù)它們的配置,CMOS ToF成像器往往具有更大的靈活性和更快的讀出速度,因此可以實(shí)現(xiàn)感興趣區(qū)域(RoI)輸出等功能。
 
● 連續(xù)波ToF系統(tǒng)的溫度校準(zhǔn)可能比脈沖ToF系統(tǒng)更容易。隨著系統(tǒng)溫度升高,解調(diào)信號和激光信號會因?yàn)闇囟茸兓舜似?,但這種偏移只會影響測量距離,在整個距離范圍內(nèi)始終存在偏置誤差,而深度線性度則基本保持穩(wěn)定。
 
連續(xù)波系統(tǒng)的缺點(diǎn):
 
● 雖然與其他傳感器相比,CMOS傳感器具有更高的輸出數(shù)據(jù)速率,但連續(xù)波傳感器需要在多個調(diào)制頻率下獲得4個相關(guān)函數(shù)樣本,并使用多幀處理來計(jì)算深度。較長的曝光時間可能會限制系統(tǒng)的整體幀率,或?qū)е逻\(yùn)動模糊,因此只能在有限類型的應(yīng)用中使用。這種更高的處理復(fù)雜性可能需要用到外部應(yīng)用處理器,而這可能超出了應(yīng)用的需求。
 
● 對于更遠(yuǎn)的測量距離或者更強(qiáng)環(huán)境光的場景,更高的連續(xù)光功率(與脈沖ToF系統(tǒng)相比)則十分必要;而這種高強(qiáng)度的連續(xù)光信號則可能導(dǎo)致散熱和可靠性的新問題。
 
脈沖ToF技術(shù)系統(tǒng)的優(yōu)點(diǎn):
 
● 脈沖ToF技術(shù)系統(tǒng)通常依賴于在很短的時間窗口內(nèi)發(fā)出高能光脈沖。它具有下列優(yōu)點(diǎn):
 
(1)更加便于設(shè)計(jì)魯棒性強(qiáng)的系統(tǒng),因此更適用于戶外。
(2)曝光時間越短,運(yùn)動模糊的效應(yīng)越小。
 
● 脈沖ToF系統(tǒng)中的信號占空比通常比同等水平的連續(xù)波系統(tǒng)要低得多,因此具有以下優(yōu)點(diǎn):
 
(1)對于長期工作的應(yīng)用,可以降低系統(tǒng)的總功耗。
(2)通過將脈沖群放置在與其他系統(tǒng)不同的幀位置,從而避免來自其他脈沖ToF系統(tǒng)的干擾。這可以通過協(xié)調(diào)各種系統(tǒng)在一幀中為激光脈沖選擇不同的位置,或者使用外部光電探測器來確定其他系統(tǒng)脈沖的位置來實(shí)現(xiàn)。另一種方法是動態(tài)隨機(jī)排列脈沖群的位置,這樣就無需協(xié)調(diào)各個系統(tǒng)之間的時序,但這種方法無法完全消除干擾。
 
● 由于脈沖時序和寬度不需要一樣,所以可以采用不同的時序方案,支持實(shí)現(xiàn)更寬的動態(tài)范圍和自動曝光等功能。
 
脈沖ToF技術(shù)系統(tǒng)的缺點(diǎn):
 
● 由于發(fā)射光脈沖的脈寬和快門的脈寬需要保持相同,所以系統(tǒng)的時序控制需要非常精確,根據(jù)應(yīng)用需要,可能需要達(dá)到皮秒級精度。
 
● 為了達(dá)到最大效率,激光脈沖寬度必須非常短,但同時必須具有極高的功率。因此,激光驅(qū)動器需要實(shí)現(xiàn)非常快的上升/下降沿(< 1ns)。
 
● 與連續(xù)波系統(tǒng)相比,其溫度校準(zhǔn)過程可能更為復(fù)雜,因?yàn)闇囟鹊淖兓瘯绊憜蝹€脈沖寬度,不僅影響偏置和增益,還會影響其線性度。
 
● 如前所述,大多數(shù)脈沖系統(tǒng)都不使用CMOS傳感器。例如:
 
(1)脈沖ToF系統(tǒng)幾乎總是需要使用外部模擬前端來數(shù)字化和輸出深度數(shù)據(jù)(盡管連續(xù)波系統(tǒng)也可能需要使用外部處理器,但這取決于后端處理的復(fù)雜度)。
(2)該系統(tǒng)的配置(特別是ToF傳感器的電源要求)需要使用更多的組件和電源軌。
 
其他深度傳感技術(shù)
 
熟悉其他深度傳感技術(shù)對理解不同方案的優(yōu)缺點(diǎn)非常有幫助;如前所述,根據(jù)用例和應(yīng)用要求,所有深度傳感系統(tǒng)各有優(yōu)缺點(diǎn)。
 
立體視覺
 
要使用立體視覺進(jìn)行深度測量,需要用到多個相機(jī),彼此之間相隔一定距離(圖6)。就像人眼一樣,會在空間中給每個相機(jī)一個參考點(diǎn),這些點(diǎn)相互獨(dú)立,因此如果在兩個相機(jī)之間能夠?qū)?yīng)還原這些點(diǎn)的坐標(biāo),系統(tǒng)就能夠計(jì)算這些點(diǎn)的位置。確定這種對應(yīng)關(guān)系需要用到高強(qiáng)度且復(fù)雜的算法。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖6. 使用立體視覺的3D深度測量
 
優(yōu)點(diǎn)
 
● 無需主動發(fā)光
 
● 它只需要使用兩個相機(jī)來獲取數(shù)據(jù),因此價(jià)格更便宜(雖然可能需要使用一個復(fù)雜的應(yīng)用處理器來找到對應(yīng)的點(diǎn),并生成3D圖像)。
 
缺點(diǎn)
 
● 如果兩個相機(jī)之間的對應(yīng)點(diǎn)沒有差別對比,則無法計(jì)算距離。對于白墻環(huán)境(因?yàn)閮蓚€相機(jī)顯示的內(nèi)容之間沒有差異)和環(huán)境光不足的環(huán)境,這個問題就會凸顯出來。
 
● 距離更遠(yuǎn)時,兩個相機(jī)彼此之間應(yīng)該相距更遠(yuǎn),以便對應(yīng)的點(diǎn)位于兩個相機(jī)的不同位置。對于需要測量更遠(yuǎn)距離的應(yīng)用,尺寸成為明顯的問題。
 
結(jié)構(gòu)光
 
結(jié)構(gòu)光的工作原理是將已知的參考點(diǎn)圖投射到三維物體上,參考點(diǎn)圖經(jīng)過物體高度調(diào)制產(chǎn)生變形,被調(diào)制的光信息被2D相機(jī)采集捕捉,然后將調(diào)制后的光信息與投射的參考點(diǎn)圖做對比,基于調(diào)制水平計(jì)算出深度圖。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖7. 使用結(jié)構(gòu)光方法的深度傳感圖解。
 
優(yōu)點(diǎn)
 
● 能夠在近距離內(nèi)(< 2米)實(shí)現(xiàn)非常高的空間分辨率和非常高的精度。
 
缺點(diǎn)
 
● 提取一幀信息需要多次投影,這可能會降低幀速率,導(dǎo)致從移動對象中提取距離信息變得非常困難。
 
● 對于遠(yuǎn)距離探測,光源需要遠(yuǎn)離相機(jī)鏡頭,因?yàn)槿绻庠淳嚯x鏡頭太近,可能導(dǎo)致無法識別圖像變形。對于需要小尺寸外形的應(yīng)用,這可能不太合適。因此,當(dāng)深度測量應(yīng)用的距離大于2米時,一般不使用結(jié)構(gòu)光方法。
 
● 室外環(huán)境光也可能干擾圖像調(diào)制,所以結(jié)構(gòu)光更加適合在室內(nèi)使用。
 
ADI深度傳感(ToF)技術(shù)
 
ADI的ToF技術(shù)屬于脈沖ToF CCD系統(tǒng)(圖8),使用高性能ToF CCD和集成了12位ADC、深度處理器(將來自CCD的原始模擬圖像信號處理成深度/像素?cái)?shù)據(jù)),以及高精度時鐘發(fā)生器(為CCD和激光器生成驅(qū)動時序)的TOF模擬處理前端ADDI9036。時序發(fā)生器的精確時序內(nèi)核支持在45 MHz時鐘頻率下按照大約174 ps分辨率調(diào)整時鐘和LD輸出。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖8. ADI ToF系統(tǒng)功能框圖。
 
與其他解決方案相比,ADI的ToF系統(tǒng)具備以下優(yōu)點(diǎn)
 
● 使用了分辨率為640×480的ToF圖像傳感器,其分辨率比市面上大部分其他ToF解決方案的分辨率高4倍。
 
● 使用了對940nm波長高度靈敏的傳感器。如之前所述,環(huán)境光將顯著降低反射信號的信噪比,特別是在強(qiáng)烈的環(huán)境光下。940nm激光器已經(jīng)變得很普遍,因?yàn)檫@種波長在太陽光光譜中占據(jù)了一席之地,在該光譜中,光子通量的幅度相對較低(圖9)。ADI ToF系統(tǒng)使用對940nm光敏感的ToF CCD,因此能夠在室外環(huán)境或具有強(qiáng)環(huán)境光的區(qū)域采集到更多的有效信號。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖9. 光子通量與太陽光的波長。
 
深度處理器采用偽隨機(jī)化算法和特殊的圖像處理功能,可以消除多機(jī)干擾(如前所述)。因此,可以在同個環(huán)境中使用多個ADI的ToF系統(tǒng)。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖10. 戶外圖像的深度圖比較。
 
在圖10顯示的示例中,在戶外使用三個不同的深度測量系統(tǒng)來測量距離。值得注意的是,使用850 nm光源的CMOS ToF系統(tǒng)很難分辨出人與三腳架,而ADI的CCD ToF系統(tǒng)卻能夠清晰地分辨出兩者。
 
W哪些應(yīng)用正在使用ToF技術(shù)?
 
如引言所述,在2D圖像中加入深度信息可以提取出更多的有效信息,從而顯著提高場景信息的質(zhì)量。例如,2D圖像檢測無法區(qū)分真人和照片。提取深度信息可以更好地區(qū)分人體,跟蹤面部和身體特征。ToF深度傳感可以提供高質(zhì)量且可靠的人臉識別方案,用于身份安全驗(yàn)證。分辨率和深度精度越高,分類算法 的性能越好。它可以用于實(shí)現(xiàn)簡單功能,例如允許訪問移動設(shè)備/私人家庭空間,也可以實(shí)現(xiàn)高端應(yīng)用,例如在商業(yè)敏感區(qū)域提供門禁控制。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖11. 數(shù)字人臉識別。
 
隨著深度傳感技術(shù)的分辨率和深度精度不斷提高,人員的區(qū)分和跟蹤將變得更加容易。人工智能的使用可以大大提高分類的置信度,從而推動新的新興應(yīng)用領(lǐng)域涌現(xiàn)。一個很好的例子是商業(yè)自動門開啟功能,尤其是在太陽光強(qiáng)烈的區(qū)域。確保門只對人開放,不對其他物體開放,這有助于實(shí)現(xiàn)高效樓宇管理,并提高安全性。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖12. 自動門開啟的人員分類。
 
隨著3D算法進(jìn)一步成熟,數(shù)據(jù)分析將被用來收集大量關(guān)于人們行為的有效信息。這種技術(shù)可能最先應(yīng)用于樓宇控制應(yīng)用,例如門禁系統(tǒng)。垂直安裝的傳感器增加了深度信息,這意味著可以非常準(zhǔn)確地計(jì)算人數(shù)。另一個用例是智能自動門開啟(圖13),它可以對人進(jìn)行區(qū)分,只有在檢測到真人時才開啟。ADI正在開發(fā)人員計(jì)數(shù)和區(qū)分的軟件算法。
 
通過使用深度信息,可以在許多具有挑戰(zhàn)性的條件下對人進(jìn)行高精度的分類,例如在光線暗淡或沒有環(huán)境光的環(huán)境中,在人口密度較大的地區(qū),以及在人員著裝復(fù)雜的情況下(例如,戴著帽子、圍巾等)。最重要的是,幾乎可以消除人員計(jì)數(shù)錯誤。如今,立體攝像機(jī)可以用于進(jìn)出檢測,但由于機(jī)械尺寸(兩個傳感器)和高處理器需求的限制,立體視覺往往價(jià)格昂貴,且尺寸很大。ADI ToF 技術(shù)直接輸出深度圖,且只采用一個傳感器,因此大大降低了外形尺寸和處理需求。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖13. 使用深度傳感技術(shù)的人員跟蹤算法。
 
深度傳感是工業(yè)、制造和建筑過程中的重要應(yīng)用。在整個生產(chǎn)過程中實(shí)時準(zhǔn)確地確定尺寸并進(jìn)行分類,這是一項(xiàng)了不起的功能。準(zhǔn)確的深度傳感可以確定倉庫的使用率。需要能夠快速確定下線產(chǎn)品的尺寸,以進(jìn)行傳輸。高分辨率深度傳感能夠?qū)崟r確定目標(biāo)對象的邊緣和線條,并快速計(jì)算出其體積。這種確定體積的應(yīng)用目前已使用神經(jīng)網(wǎng)絡(luò)方法。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖14. 3D尺寸。
 
在工廠內(nèi)部,自動傳輸產(chǎn)品的范圍不斷擴(kuò)大。AGV(自動導(dǎo)航車輛)等自動駕駛車輛將需要在工廠和倉庫中更快地自主導(dǎo)航。高精度深度傳感技術(shù)使得傳感器能夠?qū)崟r繪制所處的環(huán)境、確定自身在地圖中的位置,然后找出最高效的導(dǎo)航路線。在工廠自動化環(huán)境中部署這種技術(shù)的最大挑戰(zhàn)之一在于:來自在同一 區(qū)域運(yùn)行的其他傳感器的干擾。ADI的干擾消除IP使得這些傳感器能夠在彼此的視線范圍內(nèi)工作,且不互相影響性能。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖15.制造過程中的深度傳感用例。
 
如何使用ToF技術(shù)實(shí)施評估、原型制作和設(shè)計(jì)?
 
ADI開發(fā)了一個光學(xué)傳感器電路板 (AD-96TOF1-EBZ),與Arrow 96應(yīng) 用處理器平臺兼容。關(guān)于這款96TOF1電路板的光學(xué)規(guī)格,請參 見表1。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖16. ADI的96TOF光學(xué)深度測量電路板。
 
表1. ADI的96TOF光學(xué)電路板規(guī)格
http://m.coahr.cn/art/artinfo/id/80037449
 
該電路板可以直接連接到Arrow的96Boards系列產(chǎn)品。96Boards系列是一系列硬件處理器平臺,以合理的價(jià)格為開發(fā)人員提供基于 ARM®的最新處理器。按照96Boards規(guī)格生產(chǎn)的電路板適用于快速原型制作, Qualcomm® SnapdragonTM, 恩智浦和 NVIDIA® 處理器都支持96Boards平臺。
 
ToF深度傳感是一項(xiàng)復(fù)雜的技術(shù)。實(shí)現(xiàn)VGA傳感器的最高性能需要用到大量的光學(xué)專業(yè)知識。光學(xué)校準(zhǔn)、高速脈沖時序模式、溫度漂移和補(bǔ)償都會影響深度精度。要實(shí)現(xiàn)所需的性能,可能需要花很長時間進(jìn)行設(shè)計(jì)。雖然ADI可以提供含芯片的設(shè)計(jì),為合格客戶提供機(jī)會,但許多客戶都在尋找能夠更輕松、更快速且更高效進(jìn)入市場的方法。
 
許多客戶都對簡單的演示模塊感興趣,他們會先評估該項(xiàng)技術(shù)的性能,然后決定是否在實(shí)際項(xiàng)目中使用。ADI與多家硬件合作伙伴合作,提供不同等級的硬件產(chǎn)品。DCAM710演示模塊由我們其中一家硬件合作伙伴(Pico)提供,支持通過USB將深度圖像直接傳輸至PC。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖17. DCAM710 VGA深度測量和RGB攝像機(jī)。
 
DCAM710模塊規(guī)格
 
ToF攝像機(jī)DCAM710模塊的規(guī)格:
 
● B基于ADI的ToF信號鏈產(chǎn)品和技術(shù)
● 可輸出深度圖和(710版)ToF + RGB圖像(可禁用)
● FOV 70 × 54
● 深度攝像機(jī)支持的圖像大?。?0 FPS下,最大640 × 480
● RGB攝像機(jī)支持的圖像大?。?0 FPS下,最大1920 × 1080
● USB 2.0接口
● 支持的操作系統(tǒng):可以在 Android®, Linux® 和 Windows® 7/8/10 上 運(yùn)行
● Pico深度傳感器SDK、示例代碼和工具(兼容OpenNI SDK)
● Python®中ADI提供的示例應(yīng)用算法
 
Pico SDK軟件平臺支持Windows和Linux操作系統(tǒng),支持多種軟件功能。點(diǎn)云可以在對象周圍的空間中生成一組數(shù)據(jù)點(diǎn),通常用于生成3D模型(可以通過SDK輕松生成)。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖18. 深度傳感點(diǎn)云。
 
由于演示平臺通過USB將原始數(shù)據(jù)傳輸?shù)接?jì)算機(jī)上,因此很容易開發(fā)簡單的軟件應(yīng)用算法來幫助客戶快速開發(fā)代碼。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖19. VGA深度傳感通過USB傳輸至PC。
 
ADI在Python中提供簡單的示例代碼,以支持客戶進(jìn)行評估。下面的示例是實(shí)時截圖的Python源代碼,該代碼被用于檢測和分類人員,然后使用深度測量來確定人員與傳感器之間的關(guān)系。其他可用的算法包括終端檢測、對象跟蹤和3D安全幕。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖20. 人員分類和范圍檢測。
 
如何利用ToF實(shí)現(xiàn)量產(chǎn)?
 
雖然ADI 96TOF參考設(shè)計(jì)對進(jìn)行芯片化設(shè)計(jì)的客戶非常有用,DCAM710演示平臺仍是評估該技術(shù)的一種經(jīng)濟(jì)高效的方法,但在許多情況下,客戶進(jìn)入量產(chǎn)時,會需要使用不同或自定義程度更高的解決方案。例如,在AGV系統(tǒng)中,通常需要終端節(jié)點(diǎn)感測模塊提供GigE或以太網(wǎng)輸出。這提供了一種將來自終端節(jié)點(diǎn)感測模塊的高速原始深度數(shù)據(jù)發(fā)送至集中化CPU/GPU控制器的可靠方法。
 
http://m.coahr.cn/art/artinfo/id/80037449
圖21. 工業(yè)AGV中的深度測量(導(dǎo)航/防撞)。
 
在其他應(yīng)用中,客戶可能希望實(shí)現(xiàn)一些終端節(jié)點(diǎn)處理,但只將元數(shù)據(jù)發(fā)送回控制器。在這種情況下,就需要使用外形小巧的深度節(jié)點(diǎn)模塊,配備支持ARM或FPGA的集成式終端節(jié)點(diǎn)處理器。ADI已經(jīng)開發(fā)了大量第三方生態(tài)系統(tǒng)合作伙伴,可以滿足不同客戶的要求。
 
這些第三方提供一系列功能,從完整的攝像機(jī)產(chǎn)品到?jīng)]有外殼的小型光學(xué)模塊(可以集成到更大的系統(tǒng)中)。下圖所示為沒有外殼的微型MIPI模塊,可以輕松集成到更大的系統(tǒng)中。ADI的合作伙伴網(wǎng)絡(luò)還可以根據(jù)需要提供硬件、光學(xué)器件和應(yīng)用處理器定制服務(wù)。我們的合作伙伴如今提供的模塊包括USB、以太網(wǎng)、Wi-Fi和MIPI,以及一系列集成式終端節(jié)點(diǎn)處理器。
 
ADI和我們的硬件合作伙伴還與外部軟件合作伙伴合作,后者提供系統(tǒng)級的深度處理算法專業(yè)知識。
 
結(jié)論
 
高分辨率深度成像系統(tǒng)可以幫助解決新興應(yīng)用領(lǐng)域中的困難任務(wù)和復(fù)雜任務(wù),這一優(yōu)點(diǎn)促使我們的客戶開始迅速采用該系統(tǒng)。想要以最快的速度、最低的風(fēng)險(xiǎn)、最便宜的方式進(jìn)入市場,就需要采用經(jīng)濟(jì)高效、尺寸小巧、高度精準(zhǔn)、可以集成到更大系統(tǒng)的模塊。ADI的96TOF參考設(shè)計(jì)平臺提供一個完整的嵌入式評估平臺,使得客戶能夠立即評估技術(shù),并開始開發(fā)應(yīng)用代碼。如需獲取有關(guān)ADI的ToF技術(shù)、硬件或我們的硬件合作伙伴的更多信息,請聯(lián)系A(chǔ)DI。
 
 
推薦閱讀:
 
Teledyne e2v微處理器:高可靠性的差異
Digi-Key 宣布與 Anderson Power Products 建立全球分銷合作關(guān)系
一種降低煙感產(chǎn)品誤報(bào)率的解決方案
濕度對非氣密封電子元件及片式鉭電容器的使用可靠性影響
測量漏感,為何短路次級繞組?
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉