【導(dǎo)讀】準(zhǔn)諧振反激式變換器(Flyback Converter)由于能夠?qū)崿F(xiàn)零電壓開(kāi)通,減少了開(kāi)關(guān)損耗,降低了EMI噪聲,因此越來(lái)越受到電源設(shè)計(jì)者的關(guān)注。但是由于它是工作在變頻模式,因此導(dǎo)致諸多設(shè)計(jì)參數(shù)的不確定性。如何確定它的工作參數(shù),成為設(shè)計(jì)這種變換器的關(guān)鍵,本文給出了一種較為實(shí)用的確定方法。
近年來(lái),一些著名的國(guó)際芯片供應(yīng)商陸續(xù)推出了準(zhǔn)諧振反激式變換器的控制IC,例如安森美的NCP1207、IR公司的IRIS40XX系列、飛利浦的TEA162X系列以及意法半導(dǎo)體的L6565 等。正如這些公司宣傳的那樣,在傳統(tǒng)的反激式變換器當(dāng)中加入準(zhǔn)諧振技術(shù),既可以實(shí)現(xiàn)開(kāi)關(guān)管的零電壓開(kāi)通,從而提高了效率、減少了EMI噪聲,同時(shí)又保留了反激式變換器所固有的成本低廉、結(jié)構(gòu)簡(jiǎn)單、易于實(shí)現(xiàn)多路輸出等優(yōu)點(diǎn)。因此,準(zhǔn)諧振反激式變換器在低功率場(chǎng)合具有廣闊的應(yīng)用前景。但是,由于這種變換器的工作頻率會(huì)隨著輸入電壓及負(fù)載的變化而變化,這就給設(shè)計(jì)工作(特別是變壓器的設(shè)計(jì))造成一些困難。本文將從工作頻率入手,詳細(xì)闡述如何確定準(zhǔn)諧振反激式變換器的幾個(gè)主要設(shè)計(jì)參數(shù):最低工作頻率、變壓器初級(jí)電感量、折射電壓、初級(jí)繞組的峰值電流等。
準(zhǔn)諧振反激式變換器的工作原理

圖 1:準(zhǔn)諧振反激式變換器原理圖。
圖 1 是準(zhǔn)諧振反激式變換器的原理圖。其中:LP為初級(jí)繞組電感量,LLEAK為初級(jí)繞組漏感量,RP是初級(jí)繞組的電阻,CP是諧振電容。
由圖 1 可見(jiàn),準(zhǔn)諧振反激式變換器與傳統(tǒng)的反激式變換器的原理圖基本一樣,區(qū)別在于開(kāi)關(guān)管的導(dǎo)通時(shí)刻不一樣。圖 2 是工作在斷續(xù)模式的傳統(tǒng)反激式變換器的開(kāi)關(guān)管漏源極間電壓VDS的波形圖。這里VIN是輸入電壓,VOR為次級(jí)到初級(jí)的折射電壓。
由圖 2 可見(jiàn),當(dāng)副邊繞組中的能量釋放完畢之后(即變壓器磁通完全復(fù)位),在開(kāi)關(guān)管的漏極出現(xiàn)正弦波振蕩電壓,振蕩頻率由LP、CP決定,衰減因子由RP決定。對(duì)于傳統(tǒng)的反激式變換器,其工作頻率是固定的,因此開(kāi)關(guān)管再次導(dǎo)通有可能出現(xiàn)在振蕩電壓的任何位置(包括峰頂和谷底)??梢栽O(shè)想,如果控制開(kāi)關(guān)管每次都是在振蕩電壓的谷底導(dǎo)通,如圖 3 所示,那么就可以實(shí)現(xiàn)零電壓導(dǎo)通(或是低電壓導(dǎo)通),這必將減少開(kāi)關(guān)損耗,降低EMI噪聲。實(shí)現(xiàn)這一點(diǎn)并不困難,只要增加磁通復(fù)位檢測(cè)功能(通常是輔助繞組來(lái)實(shí)現(xiàn)),以便在檢測(cè)到振蕩電壓達(dá)到最低點(diǎn)時(shí)打開(kāi)開(kāi)關(guān)管,就能達(dá)到目的。這實(shí)質(zhì)上就是準(zhǔn)諧振反激式變換器的工作原理,前文提到的幾種IC均能實(shí)現(xiàn)這個(gè)功能。由此帶來(lái)的問(wèn)題是其工作頻率是變化的,從而影響了其它設(shè)計(jì)參數(shù)的確定。

圖 2:斷續(xù)模式的反激式變換器的開(kāi)關(guān)管漏極電壓波形。

圖 3:準(zhǔn)諧振反激式變壓器的開(kāi)關(guān)管漏極電壓波形。

圖 4:MOSFET 的漏源極間電壓波形。
設(shè)計(jì)參數(shù)的確定
設(shè)計(jì)反激式變換器,通常需要確定以下參數(shù):
IPMAX:初級(jí)繞組的最大峰值電流;
VINMIN:最低直流輸入電壓;
LP:初級(jí)繞組電感量;
VOR:次級(jí)到初級(jí)的折射電壓。
對(duì)于工作頻率fS恒定的反激式變換器,以上參數(shù)可以通過(guò)輸入輸出指標(biāo)以及選用的相關(guān)元器件等信息來(lái)確定,這個(gè)過(guò)程比較簡(jiǎn)單。但是,對(duì)于準(zhǔn)諧振反激式變換器,上述過(guò)程就比較復(fù)雜,這是因?yàn)樵跍?zhǔn)諧振模式下,工作頻率fS是變化的,fS變化了,IPMAX和LP也就無(wú)法確定,整個(gè)設(shè)計(jì)似乎是無(wú)從下手,這正是本文所要解決的問(wèn)題。
首先詳細(xì)分析一下準(zhǔn)諧振反激式變換器的工作周期。圖 3 是準(zhǔn)諧振反激式變換器的MOSFET的漏極電壓在一個(gè)工作周期內(nèi)的波形。由圖可見(jiàn),準(zhǔn)諧振模式的工作周期由三部分組成:TON、TOFF、TW。
當(dāng)開(kāi)關(guān)管導(dǎo)通時(shí),初級(jí)繞組(感量為L(zhǎng)P)有電流流動(dòng),這個(gè)電流將以斜率VIN/LP逐漸增大。當(dāng)電流達(dá)到預(yù)定的最大值IP時(shí),控制器將關(guān)斷開(kāi)關(guān)管。因此,開(kāi)關(guān)管的導(dǎo)通時(shí)間TON可由等式(1)確定:

開(kāi)關(guān)管關(guān)閉后,存儲(chǔ)在變壓器中的能量將被傳遞到次級(jí)繞組。TOFF代表了次級(jí)繞組釋放能量的過(guò)程,其值可由等式(2)確定:

其中,LS:次級(jí)繞組電感量,IPS:次級(jí)繞組峰值電流,VOUT:輸出電壓,VDS:輸出整流二極管的壓降。
設(shè)變壓器初次級(jí)繞組的匝比為 N,即:

則存在以下關(guān)系:


將(4)、(5)、(6)式代入(2)式可得:

當(dāng)次級(jí)繞組中的能量釋放完畢之后,次級(jí)繞組將停止導(dǎo)通,初級(jí)繞組上的折射電壓VOR也將消失。由于初級(jí)電感量LP和開(kāi)關(guān)管漏極電容CP以及電阻構(gòu)成一個(gè)RLC諧振電路,因此折射電壓將按等式(8)變化:

其中,a=RP/(2*LP),是衰減因子,

是諧振頻率。由此可得開(kāi)關(guān)管的漏極電壓為:

觀察(9)式可知,當(dāng)

時(shí),VDS(t)具有最小值。解方程(10)可得:

該值就是我們要求的TW,即:

至此就可得出準(zhǔn)諧振反激式變換器的一個(gè)完整工作周期為:

則其工作頻率:

另外,對(duì)于反激式變換器還存在以下的功率傳遞等式:

式中:POUT為輸出功率;η為變換器的效率。
對(duì)(14)式進(jìn)行整理可得:

將 (15)式代入(13)式整理可得:

(16)式中,PO和VIN是已知量,可由設(shè)計(jì)要求確定。效率η的經(jīng)驗(yàn)值是 0.8~0.9,對(duì)高電壓輸出取 0.85~0.9,對(duì)低電壓輸出取 0.8~0.85。這樣,對(duì)于(16)式,要想解出IP的值,還必須確定VOR、CP、fS三個(gè)未知量,下面逐一進(jìn)行分析。
1.VOR是次級(jí)到初級(jí)的折射電壓。在傳統(tǒng)的反激式變換器中,它的取值與開(kāi)關(guān)管的漏極擊穿電壓VDSS、最大輸入直流電壓VINMAX等參數(shù)有關(guān)。在準(zhǔn)諧振模式下也是如此,稍有不同的是,在準(zhǔn)諧振模式下,為了在盡可能大的范圍內(nèi)實(shí)現(xiàn)零電壓導(dǎo)通,VOR總是希望取得大一些,因此通常會(huì)選用 800V的MOSFET??砂?17)式確定VOR的大?。?/div>

式中,ΔV為初級(jí)繞組的漏感LLEAK與開(kāi)關(guān)管的漏極電容CP形成的尖峰電壓,經(jīng)驗(yàn)取值為 0.2VDSS,則(17)式變?yōu)椋?/div>

2.CP是開(kāi)關(guān)管漏極對(duì)地的電容,屬于諧振電容。它與初級(jí)繞組的漏感LLEAK形成第一個(gè)諧振電路,與初級(jí)繞組的電感LP形成第二個(gè)諧竦緶貳5諞桓魴癡竦緶吩誑 毓芄囟鮮輩夥宓繆梗虼司齠ㄗ趴 毓萇系淖罡叩繆梗壞詼 魴癡竦緶肪齠ㄗ徘拔奶岬降腡W。CP的確定可分兩種情況,一是開(kāi)關(guān)管的漏極沒(méi)有額外增加電容,C P只包括MOSFET的漏源極間電容COSS和其它一些分布電容(注:此時(shí)電源系統(tǒng)要增加RCD箝位電路以抑制電壓尖峰)。這種情況下,CP可用COSS來(lái)近似地表示。也許有人會(huì)提出,COSS會(huì)隨MOSFET的漏源極間電壓VDS的變化而變化,這該如何確定?實(shí)際上,不必為此擔(dān)心,因?yàn)橹挥挟?dāng)VDS特別小時(shí),COSS才會(huì)有顯著的變化。如果我們?nèi)DS=25V時(shí)的COSS,則不會(huì)有什么影響(大部分公司的數(shù)據(jù)手冊(cè)中給出的COSS,大多是在V DS=25V的條件下測(cè)得的)。第二種情況是開(kāi)關(guān)管的漏極額外增加了一個(gè)電容CD,此時(shí)CP包括CD以 及COSS等雜散電容。CP可由(19)式來(lái)確定:

其中,IP:初級(jí)繞組的峰值電流,LLEAK:初級(jí)繞組的漏感。
整理(19)式可得:

工程中常取LLEAK=0.2*LP,將其代入(20)式可得:

另外,對(duì)(14)式進(jìn)行整理可得:

將(22)式代入(21)式可得(23)式:
按照(23)式得出的Cp,在較大輸出功率(例如大于60W)的情況下,計(jì)算值可能偏大。當(dāng)然,較大的Cp值可以很好地抑制開(kāi)關(guān)管漏極的尖峰電壓,但是Cp值過(guò)大,會(huì)使開(kāi)關(guān)管在導(dǎo)通瞬間流過(guò)很大的尖峰電流,這個(gè)尖峰電流一方面會(huì)增加損耗,另一方面會(huì)形成EMI噪聲,嚴(yán)重時(shí)甚至?xí)鹂刂菩酒恼`動(dòng)作,影響系統(tǒng)的正常工作。
在這種情況下,我們應(yīng)采取折衷的方法,減小Cp的取值(一般可取 100pF-2200pF之間的值),同時(shí)使用RCD箝位電路來(lái)抑制開(kāi)關(guān)管上的尖峰電壓。這樣做既可以減少開(kāi)關(guān)管漏極分布電容的離散性對(duì)系統(tǒng)設(shè)計(jì)的影響,又可以避免產(chǎn)生過(guò)大的尖峰電流,同時(shí)對(duì)抑制開(kāi)關(guān)管上的尖峰電壓也有一定的好處。
3、fS是系統(tǒng)的工作頻率。對(duì)于準(zhǔn)諧振模式,工作頻率是變化的,在設(shè)計(jì)時(shí),應(yīng)該以最小的工作頻率來(lái)確定其它相關(guān)參數(shù),因此,fS在這里亦表示系統(tǒng)最小的工作頻率。它的確定須從兩方面考慮,一方面為了采用較小尺寸的變壓器,必須提高fS;另一方面為了降低開(kāi)關(guān)損耗以及減少EMI噪聲,fS應(yīng)取得小些。折衷考慮,通常取fS的范圍是 25KHz-50KHz。
至此,三個(gè)未知量VOR、Cp、fS都得到了確定,將它們代入(16)式,就可得出Ip,再將Ip代入(15)式,就可得出Lp,確定了這些關(guān)鍵參數(shù),下一步就可以設(shè)計(jì)變壓器、輸入回路、輸出回路、反饋電路和保護(hù)電路等,這些設(shè)計(jì)過(guò)程與傳統(tǒng)的反激式變換器的設(shè)計(jì)過(guò)程相同,這里就不再論述。
本文小結(jié)
準(zhǔn)諧振反激式變換器的設(shè)計(jì)具有其自身的特殊性,它的關(guān)鍵參數(shù)的確定不但需要理論等式的計(jì)算,還需要實(shí)踐經(jīng)驗(yàn)的分析假定,當(dāng)然也需要結(jié)合實(shí)際電路的波形對(duì)參數(shù)進(jìn)行恰當(dāng)?shù)恼{(diào)整,只有這樣,才能充分發(fā)揮準(zhǔn)諧振反激式變換器的高效率、低 EMI、小體積以及低成本的優(yōu)勢(shì)。
推薦閱讀:
特別推薦
- 伺服驅(qū)動(dòng)器賦能工業(yè)自動(dòng)化:多場(chǎng)景應(yīng)用方案深度解析
- 10年壽命+零下40℃耐寒:廢物管理物聯(lián)網(wǎng)設(shè)備的電池選型密碼
- 從混動(dòng)支線機(jī)到氫能飛行器:Vicor模塊化電源的航空減碳路線圖
- 意法半導(dǎo)體披露公司全球計(jì)劃細(xì)節(jié),重塑制造布局和調(diào)整全球成本基數(shù)
- 動(dòng)態(tài)存儲(chǔ)重構(gòu)技術(shù)落地!意法半導(dǎo)體全球首發(fā)可編程車規(guī)MCU破解域控制器算力僵局
- 深度解析電壓基準(zhǔn)補(bǔ)償在熱電偶冷端溫度補(bǔ)償中的應(yīng)用
- 如何為特定應(yīng)用選擇位置傳感器?技術(shù)選型方法有哪些?
技術(shù)文章更多>>
- 強(qiáng)強(qiáng)聯(lián)手!貿(mào)澤攜TE用電子書(shū)解碼智能制造破局之道
- 從單點(diǎn)突破到系統(tǒng)進(jìn)化:TDK解碼傳感器融合的AI賦能密碼
- 0.15%精度革命!意法半導(dǎo)體TSC1801重塑低邊電流檢測(cè)新標(biāo)桿
- 激光器溫度精準(zhǔn)控制,光纖通信系統(tǒng)的量子級(jí)精度躍遷
- 高精度電路噪聲飆升?解密運(yùn)放輸入電容降噪的「三重暴擊」與反殺策略
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
電阻測(cè)試儀
電阻觸控屏
電阻器
電阻作用
調(diào)速開(kāi)關(guān)
調(diào)諧器
鼎智
動(dòng)力電池
動(dòng)力控制
獨(dú)石電容
端子機(jī)
斷路器
斷路器型號(hào)
多層PCB
多諧振蕩器
扼流線圈
耳機(jī)
二極管
二極管符號(hào)
發(fā)光二極管
防靜電產(chǎn)品
防雷
防水連接器
仿真工具
放大器
分立器件
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇